Package: handwriterRF 1.1.1.9000

Stephanie Reinders

handwriterRF: Handwriting Analysis with Random Forests

Perform forensic handwriting analysis of two scanned handwritten documents. This package implements the statistical method described by Madeline Johnson and Danica Ommen (2021) <doi:10.1002/sam.11566>. Similarity measures and a random forest produce a score-based likelihood ratio that quantifies the strength of the evidence in favor of the documents being written by the same writer or different writers.

Authors:Iowa State University of Science and Technology on behalf of its Center for Statistics and Applications in Forensic Evidence [aut, cph, fnd], Stephanie Reinders [aut, cre]

handwriterRF_1.1.1.9000.tar.gz
handwriterRF_1.1.1.9000.zip(r-4.5)handwriterRF_1.1.1.9000.zip(r-4.4)handwriterRF_1.1.1.9000.zip(r-4.3)
handwriterRF_1.1.1.9000.tgz(r-4.5-any)handwriterRF_1.1.1.9000.tgz(r-4.4-any)handwriterRF_1.1.1.9000.tgz(r-4.3-any)
handwriterRF_1.1.1.9000.tar.gz(r-4.5-noble)handwriterRF_1.1.1.9000.tar.gz(r-4.4-noble)
handwriterRF_1.1.1.9000.tgz(r-4.4-emscripten)handwriterRF_1.1.1.9000.tgz(r-4.3-emscripten)
handwriterRF.pdf |handwriterRF.html
handwriterRF/json (API)
NEWS

# Install 'handwriterRF' in R:
install.packages('handwriterRF', repos = c('https://csafe-isu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/csafe-isu/handwriterrf/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:
  • cfc - A Dataframe of Cluster Fill Counts
  • random_forest - A 'ranger' Random Forest and Data Frame of Distances
  • ref_scores - Reference Similarity Scores
  • templateK40 - Cluster Template with 40 Clusters
  • test - A Test Set of Cluster Fill Rates
  • train - A Training Set of Cluster Fill Rates
  • validation - A Validation Set of Cluster Fill Rates

On CRAN:

jagscpp

6.21 score 2 stars 1 packages 18 scripts 377 downloads 11 exports 93 dependencies

Last updated 20 hours agofrom:b71886a8c7. Checks:6 OK, 2 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 29 2025
R-4.5-winOKJan 29 2025
R-4.5-macOKJan 29 2025
R-4.5-linuxOKJan 29 2025
R-4.4-winOKJan 29 2025
R-4.4-macOKJan 29 2025
R-4.3-winERRORJan 29 2025
R-4.3-macERRORJan 29 2025

Exports:%>%calculate_slrcompare_documentscompare_writer_profilesget_cluster_fill_ratesget_distancesget_rates_of_misleading_slrsget_ref_scoresinterpret_slrplot_scorestrain_rf

Dependencies:abindbackportsbootbroomcarcarDataclicodacodetoolscolorspacecorrplotcowplotcpp11curlDerivdoBydoParalleldplyrfansifarverforeachFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehandwriterigraphisobanditeratorslabelinglatticelifecyclelme4lpSolvemagickmagrittrMASSMatrixMatrixModelsmc2dmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpngpolynompurrrquantregR6rangerrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRcppGSLRcppParallelRcppZigguratRdpackreformulasreshape2RfastrjagsrlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr

An Introduction to the SLR Model

Rendered fromintroduction-to-slr-model.Rmdusingknitr::rmarkdownon Jan 29 2025.

Last update: 2025-01-25
Started: 2025-01-25

Training an SLR Model

Rendered fromtraining-slr-model.Rmdusingknitr::rmarkdownon Jan 29 2025.

Last update: 2025-01-28
Started: 2025-01-25