Package: handwriterRF (via r-universe)

November 6, 2024

Type Package

Title Handwriting Analysis with Random Forests

Version 1.0.2.9000

Maintainer Stephanie Reinders < reinders.stephanie@gmail.com>

Description Perform forensic handwriting analysis of two scanned handwritten documents. This package implements the statistical method described by Madeline Johnson and Danica Ommen (2021) <doi:10.1002/sam.11566>. Similarity measures and a random forest produce a score-based likelihood ratio that quantifies the strength of the evidence in favor of the documents being written by the same writer or different writers.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests ggplot2, knitr, rmarkdown, testthat (>= 3.0.0), tibble

VignetteBuilder knitr

Depends R (>= 2.10)

Imports dplyr, handwriter, magrittr, purrr, ranger, reshape2, tidyr, tidyselect

Config/testthat/edition 3

URL https://github.com/CSAFE-ISU/handwriterRF

BugReports https://github.com/CSAFE-ISU/handwriterRF/issues

Config/pak/sysreqs cmake libglpk-dev make libgsl0-dev libmagick++-dev gsfonts jags libicu-dev libpng-dev libxml2-dev libssl-dev

Repository https://csafe-isu.r-universe.dev

RemoteUrl https://github.com/csafe-isu/handwriterrf

RemoteRef HEAD

RemoteSha b543658113a385d2ae62cb0f96bda76bc4191a25

Contents

	calculate_percent_rank	2
	calculate_score_with_clusters	
	calculate_slr	
	calculate_slr_with_clusters	6
	cfc	8
	cfr	9
	get_cluster_fill_rates	11
	get_csafe_train_set	12
	get_distances	12
	interpret_slr	13
	plot_histograms	14
	random_forest	15
	templateK40	16
	train_rf	17
Index		19
	culate_percent_rank	
3420	Calculate Develop	

Calculate Percent Ranks

Description

Compares two handwriting samples scanned and saved a PNG images with the following steps:

- 1. processDocument splits the writing in both samples into component shapes, or graphs.
- 2. get_clusters_batch groups the graphs into clusters of similar shapes.
- 3. get_cluster_fill_counts counts the number of graphs assigned to each cluster.
- 4. get_cluster_fill_rates calculates the proportion of graphs assigned to each cluster. The cluster fill rates serve as a writer profile.
- 5. A similarity score is calculated between the cluster fill rates of the two documents using a random forest trained with **ranger**.
- 6. The similarity score is compared to reference samples of same writer and different writer similarity scores. The percent rank of the observed similarity score is returned for each sample. The percent rank for score x is calculated as the number of scores in the sample less than or equal to x divided by the total number of scores.

Usage

```
calculate_percent_rank(
  sample1_path,
  sample2_path,
  rforest = random_forest,
  project_dir = NULL
)
```

Arguments

sample1_path A file path to a handwriting sample saved in PNG file format.

A file path to a second handwriting sample saved in PNG file format.

Optional. A random forest trained with ranger. If rforest is not given, the data object random_forest is used.

Optional. A path to a directory where helper files will be saved. If no project directory is specified, the helper files will be saved to tempdir() and deleted before the function terminates.

Value

A list of two numbers

Examples

calculate_score_with_clusters

Calculate a Similarity Score from Cluster Assignments

Description

Calculates a similarity score between the cluster assignments of two handwriting samples with these steps:

- 1. get_cluster_fill_counts counts the number of graphs assigned to each cluster.
- 2. get_cluster_fill_rates calculates the proportion of graphs assigned to each cluster. The cluster fill rates serve as a writer profile.
- 3. A similarity score is calculated between the cluster fill rates of the two documents using a random forest trained with **ranger**.

Usage

```
calculate_score_with_clusters(
  sample1_clusters,
  sample2_clusters,
  rforest = random_forest,
  project_dir = NULL
)
```

Arguments

sample1_clusters

A file path to cluster assignments created with [handwriter::get_clusters_batch()]
sample2_clusters

A file path to cluster assignments created with [handwriter::get_clusters_batch()]

rforest

Optional. A random forest trained with ranger. If rforest is not given, the data object random_forest is used.

project_dir

Optional. A path to a directory where the output data frame will be saved. If no project directory is specified, the output data frame will be returned but not saved.

Details

This function is primarily useful for users who want to calculate similarity scores between large numbers of handwriting samples. Follow these steps:

- 1. Run process_batch_dir on the folder containing the scanned handwriting samples. This splits the writing in the samples into component shapes, or graphs.
- 2. Run get_clusters_batch on the output folder that contains the graphs. This groups the graphs from each sample into clusters of similar shapes.
- 3. Run 'calculate_score_with_clusters()' on pairs of files output in the previous step.

Value

A number between 0 and 1

calculate_slr 5

```
calculate_score_with_clusters(c1, c2)
```

calculate_slr

Calculate a Score-Based Likelihood Ratio

Description

Compares two handwriting samples scanned and saved a PNG images with the following steps:

- 1. processDocument splits the writing in both samples into component shapes, or graphs.
- 2. get_clusters_batch groups the graphs into clusters of similar shapes.
- 3. get_cluster_fill_counts counts the number of graphs assigned to each cluster.
- 4. get_cluster_fill_rates calculates the proportion of graphs assigned to each cluster. The cluster fill rates serve as a writer profile.
- 5. A similarity score is calculated between the cluster fill rates of the two documents using a random forest trained with **ranger**.
- 6. The similarity score is compared to reference distributions of same writer and different writer similarity scores. The result is a score-based likelihood ratio that conveys the strength of the evidence in favor of same writer or different writer. For more details, see Madeline Johnson and Danica Ommen (2021) <doi:10.1002/sam.11566>.

Usage

```
calculate_slr(
  sample1_path,
  sample2_path,
  rforest = random_forest,
  project_dir = NULL
)
```

Arguments

sample1_path A file path to a handwriting sample saved in PNG file format.

sample2_path A file path to a second handwriting sample saved in PNG file format.

rforest Optional. A random forest trained with ranger. If rforest is not given, the data

object random forest is used.

project_dir Optional. A path to a directory where helper files will be saved. If no project

directory is specified, the helper files will be saved to tempdir() and deleted

before the function terminates.

Value

A number

Examples

calculate_slr_with_clusters

Calculate a Score-Based Likelihood Ratio from Cluster Assignments

Description

Calculates a score-based likelihood ratio between the cluster assignments of two handwriting samples with these steps:

- 1. get_cluster_fill_counts counts the number of graphs assigned to each cluster.
- 2. get_cluster_fill_rates calculates the proportion of graphs assigned to each cluster. The cluster fill rates serve as a writer profile.
- 3. A similarity score is calculated between the cluster fill rates of the two documents using a random forest trained with **ranger**.
- 4. The similarity score is compared to reference distributions of same writer and different writer similarity scores. The result is a score-based likelihood ratio that conveys the strength of the evidence in favor of same writer or different writer. For more details, see Madeline Johnson and Danica Ommen (2021) <doi:10.1002/sam.11566>.

Usage

```
calculate_slr_with_clusters(
  sample1_clusters,
  sample2_clusters,
  rforest = random_forest,
  project_dir = NULL
)
```

Arguments

```
A file path to cluster assignments created with [handwriter::get_clusters_batch()]

sample2_clusters

A file path to cluster assignments created with [handwriter::get_clusters_batch()]

rforest

Optional. A random forest trained with ranger. If rforest is not given, the data object random_forest is used.

project_dir

Optional. A path to a directory where helper files will be saved. If no project directory is specified, the helper files will be saved to tempdir() and deleted before the function terminates.
```

Details

This function is primarily useful for users who want to calculate score-based likelihood ratios between large numbers of handwriting samples. Follow these steps:

- 1. Run process_batch_dir on the folder containing the scanned handwriting samples. This splits the writing in the samples into component shapes, or graphs.
- 2. Run get_clusters_batch on the output folder that contains the graphs. This groups the graphs from each sample into clusters of similar shapes.
- 3. Run 'calculate_slr_with_clusters()' on pairs of files output in the previous step.

Value

A number great than or equal to zero

8 cfc

cfc

Cluster Fill Counts for 1200 CSAFE Handwriting Database Samples

Description

A dataset containing cluster fill counts for for 1,200 handwriting samples from the CSAFE Handwriting Database. The documents were split into graphs with process_batch_dir. The graphs were grouped into clusters with get_clusters_batch. The cluster fill counts were calculated with get_cluster_fill_counts.

Usage

cfc

Format

A data frame with 1200 rows and 41 variables:

docname The file name of the handwriting sample. The file name includes the writer ID, the writing session, prompt, and repetition number of the handwriting sample. There are 1,200 handwriting samples.

writer Writer ID. There are 100 distinct writer ID's. Each writer has 12 documents.

- **doc** A document code that records the writing session, prompt, and repetition number of the handwriting sample. There are 12 distinct document codes. Each writer has a writing sample for each of the 12 document codes.
- 1 The number of graphs in cluster 1
- 2 The number of graphs in cluster 2
- 3 The number of graphs in cluster 3
- 4 The number of graphs in cluster 4
- 5 The number of graphs in cluster 5
- 6 The number of graphs in cluster 6
- 7 The number of graphs in cluster 7
- **8** The number of graphs in cluster 8
- **9** The number of graphs in cluster 9
- 10 The number of graphs in cluster 10
- 11 The number of graphs in cluster 11
- **12** The number of graphs in cluster 12
- 13 The number of graphs in cluster 13
- 14 The number of graphs in cluster 14
- 15 The number of graphs in cluster 15
- 16 The number of graphs in cluster 16

cfr 9

- 17 The number of graphs in cluster 17
- 18 The number of graphs in cluster 18
- 19 The number of graphs in cluster 19
- 20 The number of graphs in cluster 20
- 21 The number of graphs in cluster 21
- 22 The number of graphs in cluster 22
- 23 The number of graphs in cluster 23
- 24 The number of graphs in cluster 24
- 25 The number of graphs in cluster 25
- 26 The number of graphs in cluster 26
- 27 The number of graphs in cluster 27
- 28 The number of graphs in cluster 28
- 29 The number of graphs in cluster 29
- **30** The number of graphs in cluster 30
- **31** The number of graphs in cluster 31
- **32** The number of graphs in cluster 32
- **33** The number of graphs in cluster 33
- 34 The number of graphs in cluster 34
- 35 The number of graphs in cluster 35
- 36 The number of graphs in cluster 36
- 37 The number of graphs in cluster 37
- 38 The number of graphs in cluster 38
- 39 The number of graphs in cluster 39
- **40** The number of graphs in cluster 40

Source

https://forensicstats.org/handwritingdatabase/

cfr

Cluster Fill Rates for 1200 CSAFE Handwriting Database Samples

Description

A dataset containing cluster fill rates for for 1,200 handwriting samples from the CSAFE Handwriting Database. The dataset was created by running get_cluster_fill_rates on the cluster fill counts data frame cfc. Cluster fill rates are the proportion of total graphs assigned to each cluster.

Usage

cfr

10 cfr

Format

A data frame with 1200 rows and 42 variables:

docname file name of the handwriting sample

total_graphs The total number of graphs in the handwriting sample

cluster1 The number of graphs in cluster 1

cluster2 The number of graphs in cluster 2

cluster3 The number of graphs in cluster 3

cluster4 The number of graphs in cluster 4

cluster5 The number of graphs in cluster 5

cluster6 The number of graphs in cluster 6

cluster7 The number of graphs in cluster 7

cluster8 The number of graphs in cluster 8

cluster9 The number of graphs in cluster 9

cluster10 The number of graphs in cluster 10

cluster11 The number of graphs in cluster 11

cluster12 The number of graphs in cluster 12

cluster13 The number of graphs in cluster 13

cluster14 The number of graphs in cluster 14

cluster15 The number of graphs in cluster 15

cluster16 The number of graphs in cluster 16

cluster17 The number of graphs in cluster 17

cluster18 The number of graphs in cluster 18

cluster19 The number of graphs in cluster 19

cluster20 The number of graphs in cluster 20

cluster21 The number of graphs in cluster 21

cluster22 The number of graphs in cluster 22

cluster23 The number of graphs in cluster 23

cluster24 The number of graphs in cluster 24

cluster25 The number of graphs in cluster 25

cluster26 The number of graphs in cluster 26

cluster27 The number of graphs in cluster 27

cluster28 The number of graphs in cluster 28

cluster29 The number of graphs in cluster 29

cluster30 The number of graphs in cluster 30

cluster31 The number of graphs in cluster 31

cluster32 The number of graphs in cluster 32

cluster33 The number of graphs in cluster 33

get_cluster_fill_rates 11

```
cluster34 The number of graphs in cluster 34
cluster35 The number of graphs in cluster 35
cluster36 The number of graphs in cluster 36
cluster37 The number of graphs in cluster 37
cluster38 The number of graphs in cluster 38
cluster39 The number of graphs in cluster 39
cluster40 The number of graphs in cluster 40
```

Source

https://forensicstats.org/handwritingdatabase/

```
get_cluster_fill_rates

Get Cluster Fill Rates
```

Description

Calculate cluster fill rates from a data frame of cluster fill counts created with get_cluster_fill_counts.

Usage

```
get_cluster_fill_rates(df)
```

Arguments

df

A data frame of cluster fill rates created with get_cluster_fill_counts.

Value

A data frame of cluster fill rates.

```
rates <- get_cluster_fill_rates(df = cfc)</pre>
```

12 get_distances

```
get_csafe_train_set Get Training Set
```

Description

Create a training set from a data frame of cluster fill rates from the CSAFE Handwriting Database.

Usage

```
get_csafe_train_set(df, train_prompt_codes)
```

Arguments

```
df A data frame of cluster fill rates created with get_cluster_fill_rates train_prompt_codes
```

A character vector of which prompt(s) to use in the training set. Available prompts are 'pLND', 'pPHR', 'pWOZ', and 'pCMB'.

Value

A data frame

Examples

```
train <- get_csafe_train_set(df = cfr, train_prompt_codes = 'pCMB')</pre>
```

get_distances

Get Distances

Description

Calculate distances using between all pairs of cluster fill rates in a data frame using one or more distance measures. The available distance measures absolute distance, Manhattan distance, Euclidean distance, maximum distance, and cosine distance.

Usage

```
get_distances(df, distance_measures)
```

Arguments

```
df A data frame of cluster fill rates created with get_cluster_fill_rates distance_measures
```

A vector of distance measures. Use 'abs' to calculate the absolute difference, 'man' for the Manhattan distance, 'euc' for the Euclidean distance, 'max' for the maximum absolute distance, and 'cos' for the cosine distance. The vector can be a single distance, or any combination of these five distance measures.

interpret_slr 13

Details

The absolute distance between two n-length vectors of cluster fill rates, a and b, is a vector of the same length as a and b. It can be calculated as abs(a-b) where subtraction is performed elementwise, then the absolute value of each element is returned. More specifically, element i of the vector is $|a_i - b_i|$ for i = 1, 2, ..., n.

The Manhattan distance between two n-length vectors of cluster fill rates, a and b, is $\sum_{i=1}^{n} |a_i - b_i|$. In other words, it is the sum of the absolute distance vector.

The Euclidean distance between two n-length vectors of cluster fill rates, a and b, is $\sqrt{\sum_{i=1}^{n}(a_i-b_i)^2}$. In other words, it is the sum of the elements of the absolute distance vector.

The maximum distance between two n-length vectors of cluster fill rates, a and b, is $\max_{1 \le i \le n} \{|a_i - b_i|\}$. In other words, it is the sum of the elements of the absolute distance vector.

The cosine distance between two n-length vectors of cluster fill rates, a and b, is $\sum_{i=1}^{n} (a_i - b_i)^2 / (\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2})$.

Value

A data frame of distances

Examples

```
# calculate maximum and Euclidean distances between the first 3 documents in cfr.
distances <- get_distances(df = cfr[1:3, ], distance_measures = c('max', 'euc'))
distances <- get_distances(df = cfr, distance_measures = c('man'))</pre>
```

interpret_slr

Interpret an SLR Value

Description

Verbally interprent an SLR value.

Usage

```
interpret_slr(df)
```

Arguments

df

A data frame created by calculate_slr.

Value

A string

plot_histograms

Examples

```
df <- data.frame("score" = 5, "slr" = 20)
interpret_slr(df)

df <- data.frame("score" = 0.12, "slr" = 0.5)
interpret_slr(df)

df <- data.frame("score" = 1, "slr" = 1)
interpret_slr(df)

df <- data.frame("score" = 0, "slr" = 0)
interpret_slr(df)</pre>
```

plot_histograms

Plot Histograms

Description

Plot histograms of same writer and different writers reference similarity scores from a random forest created with [train_rf()]. Plot a vertical, dashed line at a similarity score calculated with [calculate_slr()] to see whether the score is more typical of the same writer or different writers reference scores.

Usage

```
plot_histograms(rforest, score = NULL)
```

Arguments

rforest A random forest created with [train_rf()]

score A similarity score calculated with [calculate_slr()]

Value

A ggplot2 plot of histograms

```
plot_histograms(rforest = random_forest)

# Add a vertical line 0.1 on the horizontal axis.
plot_histograms(rforest = random_forest, score = 0.1)
```

random_forest 15

random_forest

A ranger Random Forest, Distances, and Similarity Scores

Description

A list that contains a trained random forest created with **ranger**, the data frame of distances used to train the random forest, and similarity scores calculated from the training data.

Usage

random_forest

Format

A list with the following components:

dists The data frame used to train the random forest. The data frame has 600 rows. Each row contains the absolute and Euclidean distances between the cluster fill rates of two handwriting samples. If both handwriting samples are from the same writer, the class is 'same'. If the handwriting samples are from different writers, the class is 'different'. There are 300 'same' distances and 300 'different' distances in the data frame.

rf A random forest created with **ranger** with settings: importance = 'permutation', scale.permutation.importance = TRUE, and num.trees = 200.

scores A similarity score was obtained for each pair of handwriting samples in the training data frame, dists, by calculating the proportion of decision trees that voted 'same' class for the pair.

```
# view the random forest
random_forest$rf

# view the distances data frame
random_forest$dists

# plot histograms of the similarity scores and place a vertical
# line at similarity score 0.9.
plot_histograms(random_forest, 0.9)
```

16 templateK40

templateK40

Cluster Template with 40 Clusters

Description

A cluster template created by **handwriter** with 40 clusters. This template was created from 120 handwriting samples from the CSAFE Handwriting Database.

Usage

templateK40

Format

A list containing the contents of the cluster template.

centers_seed An integer for the random number generator use to select the starting cluster centers for the K-Means algorithm.

cluster A vector of cluster assignments for each graph used to create the cluster template. The clusters are numbered sequentially 1, 2,...,K.

centers The final cluster centers produced by the K-Means algorithm.

K The number of clusters in the template.

n The number of training graphs to used to create the template.

docnames A vector that lists the training document from which each graph originated.

writers A vector that lists the writer of each graph.

iters The maximum number of iterations for the K-means algorithm.

changes A vector of the number of graphs that changed clusters on each iteration of the K-means algorithm.

outlierCutoff A vector of the outlier cutoff values calculated on each iteration of the K-means algorithm.

stop_reason The reason the K-means algorithm terminated.

wcd The within cluster distances on the final iteration of the K-means algorithm. More specifically, the distance between each graph and the center of the cluster to which it was assigned on each iteration. The output of make_clustering_template' stores the within cluster distances on each iteration, but the previous iterations were removed here to reduce the file size.

wcss A vector of the within-cluster sum of squares on each iteration of the K-means algorithm.

Details

handwriter splits handwriting samples into component shapes called graphs. The graphs are sorted into 40 clusters with a K-Means algorithm.

train_rf

Examples

```
# view number of clusters
templateK40$K

# view number of iterations
templateK40$iters

# view cluster centers
templateK40$centers
```

train_rf

Train a Random Forest

Description

Train a random forest with **ranger** from a data frame of cluster fill rates.

Usage

```
train_rf(
   df,
   ntrees,
   distance_measures,
   output_dir = NULL,
   run_number = 1,
   downsample = TRUE
)
```

Arguments

df A data frame of cluster fill rates created with get_cluster_fill_rates

ntrees An integer number of decision trees to use

distance_measures

A vector of distance measures. Any combination of 'abs', 'euc', 'man', 'max',

and 'cos' may be used.

output_dir A path to a directory where the random forest will be saved.

run_number An integer used for both the set.seed function and to distinguish between differ-

ent runs on the same input data frame.

downsample Whether to downsample the number of different writer distances before training

the random forest. If TRUE, the different writer distances will be randomly sampled, resulting in the same number of different writer and same writer pairs.

Value

A random forest

18 train_rf

```
train <- get_csafe_train_set(df = cfr, train_prompt_code = 'pCMB')
rforest <- train_rf(
    df = train,
    ntrees = 200,
    distance_measures = c('euc'),
    run_number = 1,
    downsample = TRUE
)</pre>
```

Index

```
* cluster
    templateK40, 16
* datasets
    cfc, 8
    cfr, 9
    random_forest, 15
calculate\_percent\_rank, 2
calculate_score_with_clusters, 3
calculate_slr, 5, 13
\verb|calculate_slr_with_clusters|, 6
cfc, 8
cfr, 9
get_cluster_fill_counts, 2, 3, 5, 6, 8, 11
get_cluster_fill_rates, 2, 3, 5, 6, 9, 11,
        12, 17
get_clusters_batch, 2, 4, 5, 7, 8
get_csafe_train_set, 12
get_distances, 12
interpret_slr, 13
make_clustering_template, 16
plot_histograms, 14
process_batch_dir, 4, 7, 8
processDocument, 2, 5
random_forest, 15
templateK40, 16
train_rf, 17
```