Package: cmcR (via r-universe)

October 12, 2024

Type Package

Title An Implementation of the 'Congruent Matching Cells' Method

Version 0.1.11

Maintainer Joe Zemmels <jzemmels@iastate.edu>

Description An open-source implementation of the 'Congruent Matching Cells' method for cartridge case identification as proposed by Song (2013) <https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911193> as well as an extension of the method proposed by Tong et al. (2015) <doi:10.6028/jres.120.008>. Provides a wide range of pre, inter, and post-processing options when working with cartridge case scan data and their associated comparisons. See the cmcR package website for more details and examples.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.2

- **Imports** magrittr, x3ptools, dplyr, ggplot2 (>= 3.3.5), imager, purrr, zoo, stringr, stats, utils, scales, ggnewscale (>= 0.4.6), quantreg, tibble, tidyr, rlang, patchwork, ggplotify
- Suggests knitr, rmarkdown, markdown, testthat, DT, magick, rgl, covr, gridExtra, cowplot

VignetteBuilder knitr

Depends R (>= 3.5.0)

Repository https://csafe-isu.r-universe.dev

RemoteUrl https://github.com/csafe-isu/cmcr

RemoteRef HEAD

RemoteSha 6fcece12839643c436a406439ca2deb917722439

Contents

cmcPlot	2
comparison_alignedTargetCell	3
comparison_allTogether	4
comparison_calcPropMissing	5
comparison_cellDivision	6
comparison_cor	7
comparison_fft_ccf	8
comparison_getTargetRegions	9
comparison_replaceMissing	10
comparison_standardizeHeights	11
decision_CMC	13
decision_combineDirections	15
decision_highCMC_cmcThetaDistrib	17
decision_highCMC_identifyHighCMCThetas	18
fadulData_processed	19
preProcess_crop	20
preProcess_erode	21
preProcess_gaussFilter	22
preProcess_ransacLevel	23
preProcess_removeFPCircle	25
preProcess_removeTrend	26
x3pListPlot	27
	29

Index

cmcPlot

Plot Congruent Matching Cells results for a pair of cartridge cases.

Description

Plot Congruent Matching Cells results for a pair of cartridge cases.

Usage

```
cmcPlot(
  reference,
  target,
  cmcClassifs,
  type = "faceted",
  cmcCol = "originalMethod",
  corrCol = "pairwiseCompCor"
)
```

Arguments

the scan that is partitioned into a grid of cells
the scan to which each reference cell is compared during the cell-based compar- ison procedure
a data frame containing columns cellHeightValues, alignedTargetCell, cellIndex, theta, and user-defined cmcCol & corrCol
the form of the returned plot object(s). Either "faceted," meaning the reference and target plot will be shown side-by-side or "list" meaning each element of the plot (referece, target, and legend) will be returned separately as elements of a list
name of column containing CMC classifications as returned by the decision_CMC function. Defaults to "originalMethod"
name of column containing correlation values for each cell. Defaults to "pair- wiseCompCor," but "fft_ccf" is a common alternative.

comparison_alignedTargetCell

Extract a matrix from the target region of the same dimension as the reference cell depending on the estimated translation calculated from comparison_fft_ccf

Description

Extract a matrix from the target region of the same dimension as the reference cell depending on the estimated translation calculated from comparison_fft_ccf

Usage

```
comparison_alignedTargetCell(
   cellHeightValues,
   regionHeightValues,
   target,
   theta,
   fft_ccf_df
)
```

Arguments

cellHeightValue	S	
	list/tibble column of x3p objects containing a reference scan's cells (as returned by comparison_cellDivision)	
regionHeightValues		
	list/tibble column of x3p objects containing a target scan's regions (as returned by comparison_getTargetRegions)	
target	the scan to which each cell in the partitioned scan was compared.	

theta	the theta (rotation) value associated with each cellHeightValues, regionHeightValues pairing
fft_ccf_df	data frame/tibble column containing the data frame of (x,y) and CCF values returned by comparison_fft_ccf

Value

a list of x3p objects containing surface matrices extracted from regionHeightValues of the same dimension as the x3p objects in cellHeightValues

comparison_allTogether

Performs all steps in the cell-based comparison procedure.

Description

Performs all steps in the cell-based comparison procedure.

Usage

```
comparison_allTogether(
  reference,
  target,
  theta = 0,
  numCells = c(8, 8),
  maxMissingProp = 0.85,
  sideLengthMultiplier = 3,
  returnX3Ps = FALSE
)
```

Arguments

reference	an x3p object containing a breech face scan to be treated as the "reference scan" partitioned into a grid of cells
target	an x3p object containing a breech face scan to be treated as the "target scan" that the reference scan's cells are compared to
theta	degrees that the target scan is to be rotated prior extracting regions.
numCells	a vector of two numbers representing the number of cells along the row and column dimensions into which the x3p is partitioned
maxMissingProp	maximum proportion of missing values allowed for each cell/region.
sideLengthMultiplier	

ratio between the target region and reference cell side lengths. For example, sideLengthMultiplier = 3 implies each region will be 9 times larger than its paired reference cell.

returnX3Ps boolean to return the cellHeightValues and alignedTargetCells for each cell index. Note that setting this argument to TRUE significantly increases the size of the returned object. data(fadul1.1_processed,fadul1.2_processed) comparisonDF <- comparison_allTogether(reference = fadul1.1_processed, target = fadul1.2_processed) head(comparisonDF)

Value

a tibble object containing cell indices and the x, y, FFT-based CCF, and pairwise-complete correlation associated with the comparison between each cell and its associated target scan region (after rotating the target scan by theta degrees)

Examples

data(fadul1.1_processed,fadul1.2_processed)

```
cellTibble <- comparison_allTogether(reference = fadul1.1_processed,target = fadul1.2_processed)
```

head(cellTibble)

comparison_calcPropMissing

Calculate the proportion of missing values in a breech face scan

Description

Calculate the proportion of missing values in a breech face scan

Usage

comparison_calcPropMissing(heightValues)

Arguments

heightValues list/tibble column of x3p objects

Value

a vector of the same length as the input containing the proportion of missing values in each x3p object's breech face scan.

Examples

```
data(fadul1.1_processed)
cellTibble <- fadul1.1_processed %>%
comparison_cellDivision(numCells = c(8,8)) %>%
dplyr::mutate(cellPropMissing = comparison_calcPropMissing(heightValues = cellHeightValues))
```

```
head(cellTibble)
```

comparison_cellDivision Split a reference scan into a grid of cells

Description

Split a reference scan into a grid of cells

Arguments

хЗр	an x3p object containing a breech face scan
numCells	a vector of two numbers representing the number of cells along the row and column dimensions into which the x3p is partitioned

Value

A tibble containing a prod(numCells) number of rows. Each row contains a single cell's index of the form (row #, col #) and an x3p object containing the breech face scan of that cell.

Examples

```
data(fadul1.1_processed)
```

```
cellTibble <- fadul1.1_processed %>%
comparison_cellDivision(numCells = c(8,8))
```

head(cellTibble)

comparison_cor

Calculates correlation between a cell and a matrix of the same dimensions extracted from the cell's associated region.

Description

Calculates correlation between a cell and a matrix of the same dimensions extracted from the cell's associated region.

Usage

```
comparison_cor(
  cellHeightValues,
  regionHeightValues,
  fft_ccf_df,
  use = "pairwise.complete.obs"
)
```

Arguments

cellHeightValu	es
	list/tibble column of x3p objects containing a reference scan's cells (as returned by comparison_cellDivision)
regionHeightValues	
	list/tibble column of x3p objects containing a target scan's regions (as returned by comparison_getTargetRegions)
fft_ccf_df	data frame/tibble column containing the data frame of (x,y) and CCF values returned by comparison_fft_ccf
use	argument for stats::cor

Value

A vector of the same length as the input containing correlation values at the estimated alignment between each reference cell and its associated target region

Examples

data(fadul1.1_processed,fadul1.2_processed)

```
comparison_calcPropMissing(heightValues = regionHeightValues)) %>%
dplyr::filter(cellPropMissing <= .85 & regionPropMissing <= .85) %>%
dplyr::mutate(cellHeightValues =
       comparison_standardizeHeights(heightValues = cellHeightValues),
             regionHeightValues =
       comparison_standardizeHeights(heightValues = regionHeightValues)) %>%
dplyr::mutate(cellHeightValues =
                  comparison_replaceMissing(heightValues = cellHeightValues),
              regionHeightValues =
            comparison_replaceMissing(heightValues = regionHeightValues)) %>%
dplyr::mutate(fft_ccf_df = comparison_fft_ccf(cellHeightValues,
                                              regionHeightValues)) %>%
dplyr::mutate(pairwiseCompCor = comparison_cor(cellHeightValues,
                                               regionHeightValues,
                                               fft_ccf_df))
head(cellTibble)
```

comparison_fft_ccf	Estimate translation alignment between a cell/region pair based on the
	Cross-Correlation Theorem.

Description

Estimate translation alignment between a cell/region pair based on the Cross-Correlation Theorem.

Usage

```
comparison_fft_ccf(cellHeightValues, regionHeightValues)
```

Arguments

```
cellHeightValues
```

list/tibble column of x3p objects containing a reference scan's cells (as returned by comparison_cellDivision)

regionHeightValues

list/tibble column of x3p objects containing a target scan's regions (as returned by comparison_getTargetRegions)

Value

A list of the same length as the input containing data frames of the translation (x,y) values at which each reference cell is estimated to align in its associated target region and the CCF value at this alignment.

a data frame containing the translation (x,y) at which the CCF was maximized in aligning a target scan region to its associated reference scan cell.

Note

The FFT is not defined for matrices containing missing values. The missing values in the cell and region need to be replaced before using this function. See the comparison_replaceMissing function to replace missing values after standardization.

See Also

https://mathworld.wolfram.com/Cross-CorrelationTheorem.html

Examples

data(fadul1.1_processed,fadul1.2_processed)

```
cellTibble <- fadul1.1_processed %>%
comparison_cellDivision(numCells = c(8,8)) %>%
dplyr::mutate(regionHeightValues =
             comparison_getTargetRegions(cellHeightValues = cellHeightValues,
                                         target = fadul1.2_processed)) %>%
dplyr::mutate(cellPropMissing =
           comparison_calcPropMissing(heightValues = cellHeightValues),
              regionPropMissing =
           comparison_calcPropMissing(heightValues = regionHeightValues)) %>%
dplyr::filter(cellPropMissing <= .85 & regionPropMissing <= .85) %>%
dplyr::mutate(cellHeightValues =
       comparison_standardizeHeights(heightValues = cellHeightValues),
             regionHeightValues =
       comparison_standardizeHeights(heightValues = regionHeightValues)) %>%
dplyr::mutate(cellHeightValues =
                  comparison_replaceMissing(heightValues = cellHeightValues),
             regionHeightValues =
            comparison_replaceMissing(heightValues = regionHeightValues)) %>%
dplyr::mutate(fft_ccf_df = comparison_fft_ccf(cellHeightValues,
                                             regionHeightValues))
cellTibble %>%
```

tidyr::unnest(cols = fft_ccf_df) %>%
head()

comparison_getTargetRegions

Extract regions from a target scan based on associated cells in reference scan

Description

Extract regions from a target scan based on associated cells in reference scan

Usage

```
comparison_getTargetRegions(
   cellHeightValues,
   target,
   theta = 0,
   sideLengthMultiplier = 3,
   ...
)
```

Arguments

cellHeightValues		
	list/tibble column of x3p objects containing a reference scan's cells (as returned by comparison_cellDivision)	
target	x3p object containing a breech face scan to be compared to the reference cell.	
theta	degrees that the target scan is to be rotated prior extracting regions.	
sideLengthMultiplier		
	ratio between the target region and reference cell side lengths. For example, sideLengthMultiplier = 3 implies each region will be 9 times larger than its paired reference cell.	
	internal usage	

Value

A list of the same length as the input containing x3p objects from the target scan.

Examples

```
data(fadul1.1_processed,fadul1.2_processed)
```

```
head(cellTibble)
```

comparison_replaceMissing

Replace missing values in a scan

Description

Replace missing values in a scan

Usage

```
comparison_replaceMissing(heightValues, replacement = 0)
```

Arguments

heightValues	list/tibble column of x3p objects
replacement	value to replace NAs

Value

A list of the same length as the input containing x3p objects for which NA values have been replaced.

Examples

data(fadul1.1_processed,fadul1.2_processed)

```
cellTibble <- fadul1.1_processed %>%
comparison_cellDivision(numCells = c(8,8)) %>%
dplyr::mutate(regionHeightValues =
             comparison_getTargetRegions(cellHeightValues = cellHeightValues,
                                         target = fadul1.2_processed)) %>%
dplyr::mutate(cellPropMissing =
                 comparison_calcPropMissing(heightValues = cellHeightValues),
              regionPropMissing =
           comparison_calcPropMissing(heightValues = regionHeightValues)) %>%
dplyr::filter(cellPropMissing <= .85 & regionPropMissing <= .85) %>%
dplyr::mutate(cellHeightValues =
              comparison_standardizeHeights(heightValues = cellHeightValues),
             regionHeightValues =
       comparison_standardizeHeights(heightValues = regionHeightValues)) %>%
dplyr::mutate(cellHeightValues =
                  comparison_replaceMissing(heightValues = cellHeightValues),
             regionHeightValues =
                comparison_replaceMissing(heightValues = regionHeightValues))
```

head(cellTibble)

comparison_standardizeHeights

Standardize height values of a scan by centering/scaling by desired statistics and replacing missing values

Description

Standardize height values of a scan by centering/scaling by desired statistics and replacing missing values

Usage

```
comparison_standardizeHeights(
    heightValues,
    withRespectTo = "individualCell",
    centerBy = mean,
    scaleBy = sd
)
```

Arguments

heightValues	list/tibble column of x3p objects
withRespectTo	currently ignored
centerBy	statistic by which to center (i.e., subtract from) the height values
scaleBy	statistic by which to scale (i.e., divide) the height values

Value

A list of the same length as the input containing x3p objects with standardized surface matrices

Note

this function adds information to the metainformation of the x3p scan it is given that is required for calculating, for example, the pairwise-complete correlation using the comparison_cor function.

Examples

data(fadul1.1_processed,fadul1.2_processed)

head(cellTibble)

decision_CMC

Applies the decision rules of the original method of Song (2013) or the High CMC method of Tong et al. (2015)

Description

Applies the decision rules of the original method of Song (2013) or the High CMC method of Tong et al. (2015)

Usage

```
decision_CMC(
   cellIndex,
   x,
   y,
   theta,
   corr,
   xThresh = 20,
   yThresh = xThresh,
   thetaThresh = 6,
   corrThresh = 0.5,
   tau = NULL
)
```

Arguments

cellIndex	vector/tibble column containing cell indices corresponding to a reference cell
x	vector/tibble column containing x horizontal translation values
У	vector/tibble column containing y vertical translation values
theta	vector/tibble column containing theta rotation values
corr	vector/tibble column containing correlation similarity scores between a refer- ence cell and its associated target region
xThresh	used to classify particular x values "congruent" (conditional on a particular theta value) if they are within xThresh of the theta-specific median x value
yThresh	used to classify particular y values "congruent" (conditional on a particular theta value) if they are within yThresh of the theta-specific median y value
thetaThresh	(original method of Song (2013)) used to classify particular theta values "con- gruent" if they are within thetaThresh of the median theta value. (High CMC) defines how wide a High CMC mode is allowed to be in the CMC-theta distri- bution before it's considered too diffuse
corrThresh	to classify particular correlation values "congruent" (conditional on a particular theta value) if they are at least corrThresh

tau (optional) parameter required to apply the High CMC method of Tong et al. (2015). If not given, then the decision rule of the original method of Song (2013) is applied. This number is subtracted from the maximum CMC count achieved in the CMC-theta distribution. Theta values with CMC counts above this value are considered to have "high" CMC counts.

Value

A vector of the same length as the input containing the CMC classification under one of the two decision rules.

See Also

```
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911193
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730689/pdf/jres.120.008.pdf
```

Examples

```
## Not run:
data(fadul1.1_processed, fadul1.2_processed)
comparisonDF <- purrr::map_dfr(seq(-30,30,by = 3),</pre>
                               ~ comparison_allTogether(fadul1.1_processed,
                                                        fadul1.2_processed,
                                                        theta = .))
comparisonDF <- comparisonDF %>%
dplyr::mutate(originalMethodClassif = decision_CMC(cellIndex = cellIndex,
                                                    x = x,
                                                    y = y,
                                                    theta = theta,
                                                    corr = pairwiseCompCor),
              highCMCClassif = decision_CMC(cellIndex = cellIndex,
                                            x = x,
                                            y = y,
                                            theta = theta,
                                            corr = pairwiseCompCor,
                                            tau = 1))
comparisonDF %>%
dplyr::filter(originalMethodClassif == "CMC" | highCMCClassif == "CMC")
```

End(Not run)

decision_combineDirections

Combine data frames containing CMC results from 2 comparison directions

Description

Combines CMC results from two comparison directions of a single cartridge case pair (i.e., where each cartridge case scan has been treated as both the reference and target scan). This function assumes that the CMC results are data frames withcolumns called "originalMethodClassif" and "highCMCClassif" containing CMCs identified under the original method of Song (2013) and the High CMC method of Tong et al. (2015) (see example).

Usage

```
decision_combineDirections(
  reference_v_target_CMCs,
  target_v_reference_CMCs,
  corColName = "pairwiseCompCor",
  missingThetaDecision = "fail",
  compareThetas = TRUE,
  thetaThresh = 6
)
```

Arguments

reference_v_ta	rget_CMCs
	CMCs for the comparison between the reference scan and the target scan.
target_v_refere	ence_CMCs
	(optional) CMCs for the comparison between the target scan and the reference scan. If this is missing, then only the original method CMCs will be plotted
corColName	name of correlation similarity score column used to identify the CMCs in the two comparison_*_df data frames (e.g., pairwiseCompCor)
missingThetaDe	cision
	dictates how function should handle situations in which one direction passes the high CMC criterion while another direction does not. "dismiss": only counts the initial CMCs in failed direction and high CMCs in successful direction. "fail": only counts the initial CMCs in either direction and returns the minimum of these two numbers.
compareThetas	dictates if the consensus theta values determined under the initially proposed method should be compared to the consensus theta values determined under the High CMC method. In particular, determines for each direction whether the con- sensus theta values determined under the two methods are within theta_thresh of each other. It is often the case that non-matching cartridge cases, even if they pass the High CMC criterion, will have differing consensus theta values under the two methods. If this isn't taken into account, non-matches tend to be assigned a lot of false positive CMCs under the High CMC method.

thetaThresh (original method of Song (2013)) used to classify particular theta values "congruent" if they are within thetaThresh of the median theta value. (High CMC) defines how wide a High CMC mode is allowed to be in the CMC-theta distribution before it's considered too diffuse. This is also used in this function to determine whether the estimated alignment theta values from the two comparison directions are "approximately" opposite (i.e., within thetaThresh of each other in absolute value), which they should be if the cartridge case pair is a known match.

Value

a list of 2 elements: (1) the CMCs identified under the original method of Song (2013) for both comparison directions since Song (2013) does not indicate whether/how results are combined and (2) the combined CMC results under the High CMC method.

Examples

```
## Not run:
data(fadul1.1_processed, fadul1.2_processed)
comparisonDF_1to2 <- purrr::map_dfr(seg(-30,30,by = 3),</pre>
                                    ~ comparison_allTogether(fadul1.1_processed,
                                                        fadul1.2_processed,
                                                         theta = .)
comparisonDF_2to1 <- purrr::map_dfr(seq(-30,30,by = 3),</pre>
                                    ~ comparison_allTogether(fadul1.2_processed,
                                                        fadul1.1_processed,
                                                        theta = .))
comparisonDF_1to2 <- comparisonDF_1to2 %>%
dplyr::mutate(originalMethodClassif = decision_CMC(cellIndex = cellIndex,
                                                    x = x,
                                                    y = y,
                                                    theta = theta,
                                                    corr = pairwiseCompCor),
              highCMCClassif = decision_CMC(cellIndex = cellIndex,
                                            x = x,
                                            y = y,
                                            theta = theta,
                                            corr = pairwiseCompCor,
                                            tau = 1))
comparisonDF_2to1 <- comparisonDF_2to1 %>%
dplyr::mutate(originalMethodClassif = decision_CMC(cellIndex = cellIndex,
                                                    x = x,
                                                    y = y,
                                                    theta = theta,
                                                    corr = pairwiseCompCor),
              highCMCClassif = decision_CMC(cellIndex = cellIndex,
                                            x = x,
                                            y = y,
```

theta = theta, corr = pairwiseCompCor, tau = 1))

decision_combineDirections(comparisonDF_1to2,comparisonDF_2to1)

End(Not run)

decision_highCMC_cmcThetaDistrib

Compute CMC-theta distribution for a set of comparison features

Description

Compute CMC-theta distribution for a set of comparison features

Usage

```
decision_highCMC_cmcThetaDistrib(
   cellIndex,
   x,
   y,
   theta,
   corr,
   xThresh = 20,
   yThresh = xThresh,
   corrThresh = 0.5
)
```

Arguments

cellIndex	vector/tibble column containing cell indices corresponding to a reference cell
x	vector/tibble column containing x horizontal translation values
У	vector/tibble column containing y vertical translation values
theta	vector/tibble column containing theta rotation values
corr	vector/tibble column containing correlation similarity scores between a refer- ence cell and its associated target region
xThresh	used to classify particular x values "congruent" (conditional on a particular theta value) if they are within xThresh of the theta-specific median x value
yThresh	used to classify particular y values "congruent" (conditional on a particular theta value) if they are within yThresh of the theta-specific median y value
corrThresh	to classify particular correlation values "congruent" (conditional on a particular theta value) if they are at least corrThresh

Value

a vector of the same length as the input containing a "CMC Candidate" or "Non-CMC Candidate" classification based on whether the particular cellIndex has congruent x,y, and theta features.

Note

This function is a helper internally called in the decision_CMC function. It is exported to be used as a diagnostic tool for the High CMC method

Examples

```
## Not run:
data(fadul1.1_processed,fadul1.2_processed)
comparisonDF <- purrr::map_dfr(seq(-30,30,by = 3),</pre>
                               ~ comparison_allTogether(fadul1.1_processed,
                                                         fadul1.2_processed,
                                                        theta = .))
comparisonDF <- comparisonDF %>%
dplyr::mutate(cmcThetaDistribClassif = decision_highCMC_cmcThetaDistrib(cellIndex = cellIndex,
                                                                   x = x,
                                                                   y = y,
                                                                   theta = theta,
                                                                  corr = pairwiseCompCor))
comparisonDF %>%
dplyr::filter(cmcThetaDistribClassif == "CMC Candidate") %>%
ggplot2::ggplot(ggplot2::aes(x = theta)) +
ggplot2::geom_bar(stat = "count")
## End(Not run)
```

decision_highCMC_identifyHighCMCThetas Classify theta values in CMC-theta distribution as having "High" or "Low" CMC candidate counts

Description

Classify theta values in CMC-theta distribution as having "High" or "Low" CMC candidate counts

Usage

```
decision_highCMC_identifyHighCMCThetas(cmcThetaDistrib, tau = 1)
```

Arguments

cmcThetaDistri	b
	output of the decision_highCMC_cmcThetaDistrib function
tau	constant used to define a "high" CMC count. This number is subtracted from the maximum CMC count achieved in the CMC-theta distribution. Theta values
	with CMC counts above this value are considered to have "high" CMC counts.

Value

A vector of the same length as the input containing "High" or "Low" classification based on whether the associated theta value has a High CMC Candidate count.

Note

This function is a helper internally called in the decision_CMC function. It is exported to be used as a diagnostic tool for the High CMC method

Examples

```
## Not run:
data(fadul1.1_processed,fadul1.2_processed)
comparisonDF <- purrr::map_dfr(seq(-30,30,by = 3),</pre>
                              ~ comparison_allTogether(fadul1.1_processed,
                                                        fadul1.2_processed,
                                                        theta = .))
highCMCthetas <- comparisonDF %>%
dplyr::mutate(cmcThetaDistribClassif = decision_highCMC_cmcThetaDistrib(cellIndex = cellIndex,
                                                                  x = x,
                                                                  y = y,
                                                                  theta = theta,
                                                             corr = pairwiseCompCor)) %>%
decision_highCMC_identifyHighCMCThetas(tau = 1)
highCMCthetas %>%
dplyr::filter(cmcThetaDistribClassif == "CMC Candidate") %>%
ggplot2::ggplot(ggplot2::aes(x = theta,fill = thetaCMCIdentif)) +
ggplot2::geom_bar(stat = "count")
## End(Not run)
```

fadulData_processed Processed versions of the fadul1.1_raw and fadul1.2_raw datasets using preProcess_* functions from the cmcR package

Description

"Fadul 1-1" and "Fadul 1-2" cartridge cases from Fadul et al. (2011). The scans have been downsampled by a factor of 8 and processed using functions from the cmcR package.

Usage

fadul1.1_processed

fadul1.2_processed

Format

An x3p object containing a surface matrix and metainformation concerning the conditions under which the scan was taken

header.info size and resolution of scan

surface.matrix spatially-ordered matrix of elements representing the height values of the processed cartridge case surface at particular locations

feature.info provides structure for storing surface data

general.info information concerning the author of the scan and capturing device

matrix.info provides link to surface measurements in binary format

An object of class x3p of length 5.

Source

https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/Details/2d9cc51f-6f66-40a0-973a-a9292dbe

See Also

T. Fadul, G. Hernandez, S. Stoiloff, and G. Sneh. An Empirical Study to Improve the Scientific Foundation of Forensic Firearm and Tool Mark Identification Utilizing 10 Consecutively Manufactured Slides, 2011.

https://github.com/heike/x3ptools

preProcess_crop Remove observations from the exterior of interior of a breech face scan

Description

Remove observations from the exterior of interior of a breech face scan

Usage

```
preProcess_crop(x3p, region = "exterior", offset = 0, ...)
```

preProcess_erode

Arguments

х3р	an x3p object containing the surface matrix of a cartridge case scan
region	dictates whether the observations on the "exterior" or "interior" of the scan are removed
offset	an integer (positive or negative) value to add to the estimated radius of the asso- ciated region
	internal usage

Value

An x3p object containing the surface matrix of a breech face impression scan where the observations on the exterior/interior of the breech face scan surface.

Examples

preProcess_erode Erode the interior or exterior of a cartridge case surface

Description

performs the morphological operations and dilation to "shave" observations off of the interior or exterior of a cartridge case surface matrix.

Usage

```
preProcess_erode(x3p, region, morphRadius = 50)
```

Arguments

x3p	an x3p object
region	either "interior," meaning the observations around the firing pin hole will be eroded, or "exterior," meaning the observations around the outer edge of the cartridge case primer will be eroded
morphRadius	controls the amount of erosion. Larger values correspond to a larger (circular) morphological mask leading to more erosion.

preProcess_gaussFilter

Performs a low, high, or bandpass Gaussian filter on a surface matrix with a particular cut-off wavelength.

Description

Performs a low, high, or bandpass Gaussian filter on a surface matrix with a particular cut-off wavelength.

Usage

```
preProcess_gaussFilter(x3p, wavelength = c(16, 500), filtertype = "bp")
```

Arguments

х3р	an x3p object containing a surface matrix
wavelength	cut-off wavelength
filtertype	specifies whether a low pass, "lp", high pass, "hp", or bandpass, "bp" filter is to be used. Note that setting filterype = "bp" means that wavelength should be a vector of two numbers. In this case, the max of these two number will be used for the high pass filter and the min for the low pass filter.

Value

An x3p object containing the Gaussian-filtered surface matrix.

See Also

https://www.mathworks.com/matlabcentral/fileexchange/61003-filt2-2d-geospatial-data-filter?focused=7181587&tab=exam

Examples

data(fadul1.1_processed)

```
#Applying the function to fadul1.1_processed (note that this scan has already
# been Gaussian filtered)
cmcR::preProcess_gaussFilter(fadul1.1_processed)
#As a part of the recommended preprocessing pipeline (take > 5 sec to run):
## Not run:
nbtrd_link <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/"</pre>
fadul1.1_link <- "DownloadMeasurement/2d9cc51f-6f66-40a0-973a-a9292dbee36d"</pre>
fadul1.1 <- x3ptools::read_x3p(paste0(nbtrd_link,fadul1.1_link))</pre>
fadul1.1_extCropped <- preProcess_crop(x3p = fadul1.1,</pre>
                                         region = "exterior",
                                         radiusOffset = -30)
fadul1.1_intCroped <- preProcess_crop(x3p = fadul1.1_extCropped,</pre>
                                       region = "interior",
                                       radiusOffset = 200)
fadul1.1_leveled <- preProcess_removeTrend(x3p = fadul1.1_intCroped,</pre>
                                             statistic = "quantile",
                                             tau = .5,
                                             method = "fn")
fadul1.1_filtered <- preProcess_gaussFilter(x3p = fadul1.1_leveled,</pre>
                                              wavelength = c(16, 500),
                                              filtertype = "bp")
x3pListPlot(list("Original" = fadul1.1,
                  "Ext. & Int. Cropped" = fadul1.1_intCroped,
                  "Cropped and Leveled" = fadul1.1_leveled,
                  "Filtered" = fadul1.1_filtered),type = "list")
```

End(Not run)

preProcess_ransacLevel

Finds plane of breechface marks using the RANSAC method

Description

Finds plane of breechface marks using the RANSAC method

Usage

```
preProcess_ransacLevel(
   x3p,
```

```
ransacInlierThresh = 1e-06,
ransacFinalSelectThresh = 2e-05,
iters = 300,
returnResiduals = TRUE
```

Arguments

)

хЗр	an x3p object containing a surface matrix
ransacInlierThresh	
	threshold to declare an observed value close to the fitted plane an "inlier". A smaller value will yield a more stable estimate.
ransacFinalSel	ectThresh
	once the RANSAC plane is fitted based on the ransacInlierThresh, this argument dictates which observations are selected as the final breech face estimate.
iters	number of candidate planes to fit (higher value yields more stable breech face estimate)
returnResiduals	
	dictates whether the difference between the estimated breech face and fitted plane are returned (residuals) or if the estimates breech face is simply shifted down by its mean value

Value

an x3p object containing the leveled surface matrix.

Note

Given input depths (in microns), find best-fitting plane using RANSAC. This should be the plane that the breechface marks are on. Adapted from cartridges3D::findPlaneRansac function. This a modified version of the findPlaneRansac function available in the cartridges3D package on GitHub.

The preProcess_ransacLevel function will throw an error if the final plane estimate is rank-deficient (which is relatively unlikely, but theoretically possible). Re-run the function (possibly setting a different seed) if this occurs.

See Also

https://github.com/xhtai/cartridges3D

Examples

End(Not run)

preProcess_removeFPCircle

Given a surface matrix, estimates and filters any pixels within the estimated firing pin impression circle

Description

Given a surface matrix, estimates and filters any pixels within the estimated firing pin impression circle

Usage

```
preProcess_removeFPCircle(
  x3p,
  aggregationFunction = mean,
  smootherSize = 2 * round((0.1 * nrow(surfaceMat)/2)) + 1,
  gridSize = 40,
  gridGranularity = 1,
  houghScoreQuant = 0.9
)
```

Arguments

х3р	an x3p object containing a surface matrix
aggregationFunction	
	function to select initial radius estimate from those calculated using fpRadius-GridSearch
smootherSize	size of average smoother (to be passed to zoo::roll_mean)
gridSize	size of grid, centered on the initial radius estimate, to be used to determine the best fitting circle to the surface matrix via the Hough transform method
gridGranularity	
	granularity of radius grid used to determine the best fitting circle to the surface matrix via the Hough transform method
houghScoreQuant	
	quantile cut-off to be used when determining a final radius estimate using the score values returned by the imager::hough_circle

Value

An x3p object containing a surface matrix with the estimated firing pin circle pixels replaced with NAs.

Note

imager treats a matrix as its transpose (i.e., x and y axes are swapped). As such, relative to the original surface matrix, the x and y columns in the data frame fpImpressionCircle actually correspond to the row and column indices at which the center of the firing pin impression circle is estiamted to be.

Examples

```
## Not run:
nbtrd_link <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/"</pre>
fadul1.1_link <- "DownloadMeasurement/2d9cc51f-6f66-40a0-973a-a9292dbee36d"</pre>
fadul1.1 <- x3ptools::read_x3p(paste0(nbtrd_link,fadul1.1_link))</pre>
fadul1.1_labelCropped <- fadul1.1 %>%
                     preProcess_crop(region = "exterior",
                                      radiusOffset = -30) %>%
                     preProcess_crop(region = "interior",
                                      radiusOffset = 200) %>%
                     preProcess_removeTrend(statistic = "quantile",
                                             tau = .5,
                                             method = "fn")
fadul1.1_houghCropped <- fadul1.1 %>%
                          x3ptools::x3p_sample() %>%
                           preProcess_ransacLevel() %>%
                          preProcess_crop(region = "exterior",
                                           radiusOffset = -30) %>%
                           preProcess_removeFPCircle()
x3pListPlot(list("Original" = fadul1.1,
                 "Cropped by Labeling" = fadul1.1_labelCropped,
                 "Cropped by Hough" = fadul1.1_houghCropped),type = "list")
```

End(Not run)

preProcess_removeTrend

Level a breech face impression surface matrix by a conditional statistic

Description

Level a breech face impression surface matrix by a conditional statistic

x3pListPlot

Usage

```
preProcess_removeTrend(x3p, statistic = "mean", ...)
```

Arguments

х3р	an x3p object containing the surface matrix of a cartridge case scan
statistic	either "mean" or "quantile"
	arguments to be set in the quantreg::rq function if statistic = "quantile" is set. In this case, tau = .5 and method = "fn" are recommended

Value

an x3p object containing the leveled cartridge case scan surface matrix.

Examples

```
#Process fadul1.1 "from scratch" (takes > 5 seconds to run)
## Not run:
nbtrd_link <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/"</pre>
fadul1.1_link <- "DownloadMeasurement/2d9cc51f-6f66-40a0-973a-a9292dbee36d"</pre>
fadul1.1 <- x3ptools::read_x3p(paste0(nbtrd_link,fadul1.1_link))</pre>
fadul1.1_extCropped <- preProcess_crop(x3p = fadul1.1,</pre>
                                         region = "exterior",
                                         radiusOffset = -30)
fadul1.1_intCroped <- preProcess_crop(x3p = fadul1.1_extCropped,</pre>
                                        region = "interior",
                                        radiusOffset = 200)
fadul1.1_leveled <- preProcess_removeTrend(x3p = fadul1.1_intCroped,</pre>
                                             statistic = "quantile",
                                             tau = .5,
                                             method = "fn")
x3pListPlot(list("Original" = fadul1.1,
                 "Ext. Cropped" = fadul1.1_extCropped,
                 "Ext. & Int. Cropped" = fadul1.1_intCroped,
                  "Cropped and Leveled" = fadul1.1_leveled))
## End(Not run)
```

x3pListPlot

Plot a list of x3ps

Description

Plots the surface matrices in a list of x3p objects. Either creates one plot faceted by surface matrix or creates individual plots per surface matrix and returns them in a list.

Usage

Arguments

x3pList	a list of x3p objects. If the x3p objects are named in the list, then these names will be included in the title of their respective plot
type	dictates whether one plot faceted by surface matrix or a list of plots per surface matrix is returned. The faceted plot will have a consistent height scale across all surface matrices.
legend.quantiles	
	vector of quantiles to be shown as tick marks on legend plot
height.quantiles	
	vector of quantiles associated with each color defined in the height.colors argument
height.colors	vector of colors to be passed to scale_fill_gradientn that dictates the height value colorscale
na.value	color to be used for NA values (passed to scale_fill_gradientn)

Value

A ggplot object or list of ggplot objects showing the surface matrix height values.

Examples

data(fadul1.1_processed,fadul1.2_processed)

Index

```
* datasets
    fadulData_processed, 19
cmcPlot, 2
comparison_alignedTargetCell, 3
comparison_allTogether,4
comparison_calcPropMissing, 5
comparison_cellDivision, 6
comparison_cor,7
comparison_fft_ccf, 8
comparison_getTargetRegions,9
comparison_replaceMissing, 9, 10
comparison_standardizeHeights, 11
decision_CMC, 13
decision_combineDirections, 15
decision_highCMC_cmcThetaDistrib, 17
decision_highCMC_identifyHighCMCThetas,
        18
fadul1.1_processed
        (fadulData_processed), 19
fadul1.2_processed
        (fadulData_processed), 19
fadulData_processed, 19
preProcess_crop, 20
preProcess_erode, 21
preProcess_gaussFilter, 22
preProcess_ransacLevel, 23
preProcess_removeFPCircle, 25
preProcess_removeTrend, 26
x3pListPlot, 27
```